Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells
نویسندگان
چکیده
This study characterized the electrical and optical properties of single-junction GaAs solar cells coated with antireflective layers of silicon dioxide (SiO₂), indium tin oxide (ITO), and a hybrid layer of SiO₂/ITO applied using Radio frequency (RF) sputtering. The conductivity and transparency of the ITO film were characterized prior to application on GaAs cells. Reverse saturation-current and ideality factor were used to evaluate the passivation performance of the various coatings on GaAs solar cells. Optical reflectance and external quantum efficiency response were used to evaluate the antireflective performance of the coatings. Photovoltaic current-voltage measurements were used to confirm the efficiency enhancement obtained by the presence of the anti-reflective coatings. The conversion efficiency of the GaAs cells with an ITO antireflective coating (23.52%) exceeded that of cells with a SiO₂ antireflective coating (21.92%). Due to lower series resistance and higher short-circuit current-density, the carrier collection of the GaAs cell with ITO coating exceeded that of the cell with a SiO₂/ITO coating.
منابع مشابه
Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells
The front transparent conductive oxide layer is a source of significant optical and electrical losses in silicon heterojunction solar cells because of the trade-off between free-carrier absorption and sheet resistance. We demonstrate that hydrogen-doped indium oxide (IO:H), which has an electron mobility of over 100 cm/V s, reduces these losses compared to traditional, low-mobility transparent ...
متن کاملCarbon nanotubes grown on In2O3:Sn glass as large area electrodes for organic photovoltaics
The authors report the growth of multiwall carbon nanotubes directly onto indium tin oxide glass via chemical vapor deposition as large area semitransparent electrodes for organic solar cell applications. The rate of nanotube growth on this ternary oxide is greatly reduced as compared to that of silicon dioxide and glass substrates enabling a high degree of control over nanotube height. The str...
متن کاملEpi-n-IZO thin films/Æ1 0 0æ Si, GaAs and InP by L-MBE––a novel feasibility study for SIS type solar cells
High quality epitaxial indium zinc oxide (heavily indium oxide doped) (epi-n-IZO) thin films were optimized by laser-molecular beam epitaxy (L-MBE) i.e., pulsed laser deposition (PLD) technique for fabricating novel isoand hetero-semiconductor–insulator–semiconductor (SIS) type solar cells using Johnson Matthey ‘‘specpure’’grade 90% In2O3 mixed 10% ZnO (as commercial indium tin oxide (ITO) comp...
متن کاملA Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates
The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...
متن کاملDamage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering
Related Articles Laser-silicon interaction for selective emitter formation in photovoltaics. II. Model applications J. Appl. Phys. 112, 114907 (2012) Laser-silicon interaction for selective emitter formation in photovoltaics. I. Numerical model and validation J. Appl. Phys. 112, 114906 (2012) Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystal...
متن کامل